Cell-permeable cyclic peptides from synthetic libraries inspired by natural products.

نویسندگان

  • William M Hewitt
  • Siegfried S F Leung
  • Cameron R Pye
  • Alexandra R Ponkey
  • Maria Bednarek
  • Matthew P Jacobson
  • R Scott Lokey
چکیده

Drug design efforts are turning to a new generation of therapeutic targets, such as protein-protein interactions (PPIs), that had previously been considered "undruggable" by typical small molecules. There is an emerging view that accessing these targets will require molecules that are larger and more complex than typical small molecule drugs. Here, we present a methodology for the discovery of geometrically diverse, membrane permeable cyclic peptide scaffolds based on the synthesis and permeability screening of a combinatorial library, followed by deconvolution of membrane-permeable scaffolds to identify cyclic peptides with good to excellent passive cell permeabilities. We use a combination of experimental and computational approaches to investigate structure-permeability relationships in one of these scaffolds, and uncover structural and conformational factors that govern passive membrane diffusion in a related set of cyclic peptide diastereomers. Further, we investigate the dependency of permeability on side-chain identity of one of these scaffolds through single-point diversifications to show the adaptability of these scaffolds toward development of permeability-biased libraries suitable for bioactivity screens. Overall, our results demonstrate that many novel, cell permeable scaffolds exist beyond those found in extant natural products, and that such scaffolds can be rapidly identified using a combination of synthesis and deconvolution which can, in principle, be applied to any type of macrocyclic template.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of cyclic peptides and proteins in vivo.

Combinatorial libraries of synthetic and natural products are an important source of molecular information for the interrogation of biological targets. Methods for the intracellular production of libraries of small, stable molecules would be a valuable addition to existing library technologies by combining the discovery potential inherent in small molecules with the large library sizes that can...

متن کامل

Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides.

Natural peptide products often contain N-methylated backbones, and such a modification plays a crucial role in making natural peptides peptidase resistant and membrane permeable. Here, we demonstrate the ribosomal synthesis of N-methyl-peptides by means of genetic code reprogramming. Two key technologies, a ribozyme-based de novo tRNA acylation (flexizyme) system and an E. coli reconstituted ce...

متن کامل

Structural requirements for the biosynthesis of backbone cyclic peptide libraries.

BACKGROUND Combinatorial methods for the production of molecular libraries are an important source of ligand diversity for chemical biology. Synthetic methods focus on the production of small molecules that must traverse the cell membrane to elicit a response. Genetic methods enable intracellular ligand production, but products must typically be large molecules in order to withstand cellular ca...

متن کامل

Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex

Cyclic peptide natural products have evolved to exploit diverse protein targets, many of which control essential cellular processes. Inspired by a series of cyclic peptides with partially elucidated structures, we designed synthetic variants of ternatin, a cytotoxic and anti-adipogenic natural product whose molecular mode of action was unknown. The new ternatin variants are cytotoxic toward can...

متن کامل

Probing the Physicochemical Boundaries of Cell Permeability and Oral Bioavailability in Lipophilic Macrocycles Inspired by Natural Products.

Cyclic peptide natural products contain a variety of conserved, nonproteinogenic structural elements such as d-amino acids and amide N-methylation. In addition, many cyclic peptides incorporate γ-amino acids and other elements derived from polyketide synthases. We hypothesized that the position and orientation of these extended backbone elements impact the ADME properties of these hybrid molecu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 137 2  شماره 

صفحات  -

تاریخ انتشار 2015